Все о тюнинге авто

Составление математических моделей. Что такое математическая модель? Виды математического моделирования примеры

Модель - это такой материальный или мысленно представляемый объект, который в процессе познания (изучения) замещает объект-оригинал, сохраняя некоторые важные для данного исследования типичные его черты.

Математическая модель - модель, в которой для описания свойств и типичных черт объекта используются математические символы.

Покупая в магазине разные продукты, мы автоматически занимаемся простейшим математическим моделированием. Запомнив цену каждого продукта, мы (или кассир) складываем абстрактные числа, оплачиваем сумму и затем по каждому чеку (числу на чеке) получаем конкретный продукт.

Такую же простейшую схему математического моделирования мы много раз применяли в курсе алгебры при решении текстовых задач. Мы перекладывали практическую задачу на математический язык, решали математическую задачу, а затем интерпретировали математический результат.

Процесс математического моделирования - это процесс построения математической модели. Он состоит из следующих этапов:

Переложение практической задачи на математический язык: составление уравнений, неравенств, системы уравнений и неравенств и т. д.

Решение математической задачи: уравнения, неравенства, системы и т. д.

Интерпретация математического результата: переход от найденных чисел (корней уравнений, решений неравенств) к их практическому смыслу в данной задаче.

Проверка результата практикой.

Первые три этапа мы все применяли при решении текстовых алгебраических задач. И если мы не допустили ошибок, что проверяется непосредственно проверкой или по данным в учебнике ответам, то считается, что задача решена верно. При решении практических задач такого ответа не существует. Представьте себе, что решается сложная задача о конструировании самолета или не менее сложная экономическая задача. В таких случаях необходима проверка математических выводов экспериментом.

Чтобы проверить теоретические выводы о конструкции самолета, строят его модель - единственный (а не серийный) настоящий самолет - и сначала проверяют его испытанием в аэродинамической трубе. Затем проводят испытания в настоящем полете. Во время испытания выявляются недостатки, уточняются условия задачи, уточняются и проверяются все три этапа ее решения. Затем снова эксперимент, и так до получения хорошего для практики результата.

Таким образом, вырисовывается следующая схема математического моделирования:

Рассмотрим пример.

Задача. Два художника купили по одинаковому количеству краски. Первый из них половину всей краски купил по рублей за тюбик, а другую половину - по рублей за тюбик. Второй половину всех денег за покупку истратил на тюбики по рублей, а другую половину денег - на тюбики по рублей. Кто из них заплатил за покупку меньше?

Решение. I. Введем обозначения:

S - число тюбиков, купленных каждым художником;

х рублей - сумма, затраченная на покупку первым художником;

y рублей - сумма, затраченная на покупку вторым художником.

По условию задачи имеем:

S/2 + S/2 = x, (1)

y/ 2 + y/ 2 =S, (2)

Итак, нужно выяснить, какое из чисел, x или y, меньше другого, если положительные числа, x, y, S удовлетворяют равенствам (1), (2). Эта математическая задача и есть математическая модель данной практической задачи.

Приведем некоторые задачи, решаемые методом моделирования

Задача о рекламе. Средства массовой информации дают рекламные объявления для ускорения сбыта некоторой продукции, которая есть в продаже. Последующая информация о продукции распространяется среди покупателей посредством общения друг с другом. По какому закону распространяется известие о наличии этой продукции?

Решение. Пусть N число потенциальных покупателей данной продукции и в момент времени t об ее наличии в продаже знают х (t) покупателей. Хотя на самом деле число покупателей целое, но для абстрактной математической модели можно считать, что функция х (t) может принимать все значения от 0 до N.

Статистика показывает, что с большой степенью достоверности скорость изменения функции х (t) прямо пропорциональна как числу знающих о продукции, так и числу не знающих. Если условится, что время отсчитывается после рекламных объявлений, когда о товаре узнало N / человек, то приходим к дифференциальному уравнению

x (t) = kx(t)(N x(t)) (3)

с начальными условиями х = N / при t = 0. В уравнении (3) коэффициент k это положительный коэффициент пропорциональности, который определяется экспериментально и зависит от интенсивности рекламы и скорости распространения слухов.

Интегрируя уравнение (1), находим, что

1 / N ln (x /(N x)) = kt + С.

Полагая NC = C1, приходим к равенству

x / (N x) = AеNk t , где А = еC1 .

Если последнее уравнение разрешить относительно х, то получим соотношение

х (t) = N Aе Nkt / AеNkt + 1 = N / 1 + Ре Nkt , (4)

где Р = 1/ A.

Если учесть теперь начальные условия, то уравнение (4) перепишется в виде

х (t) = N / (1 + (1)Nkt

Задача (химия и технология производства). Через сосуд ёмкостью а литров, наполненный водным раствором некоторой соли, непрерывно протекает жидкость, причем в единицу времени втекает b литров чистой воды и вытекает такое же количество раствора.

Найти закон, по которому изменяется содержание соли в сосуде в зависимости от времени протекания жидкости через сосуд.

Решение: в данный момент времени t в сосуде содержится некоторое число x кг соли, а в b литрах кг.

Если бы в течение единицы времени, начиная с момента t , концентрация раствора оставалась неизменной, т.е. такой, какой она была в момент времени t, то количество соли в сосуде за эту единицу времени уменьшилось бы на кг; такова скорость уменьшения количества соли в сосуде для момента t.

С другой стороны, производная равна скорости прироста количества соли в момент t; значит, скорость уменьшения количества соли в момент t будет равна. Итак, имеем:

Разделим переменные: , откуда, или потенцируя,

(5), где - произвольная постоянная.

Предположим для определенности, что при t=0 количество соли в сосуде было равно c кг.

Полагая в формуле (5) t=0, найдем, что и получим окончательно, т.е. количество соли убывает с течением времени по «показательному» закону.

Задача (биология, процессы прироста). В культуре пивных дрожжей быстрота прироста действующего фермента пропорциональна наличному его количеству x. Первоначальное количество фермента было a. Через час оно удвоилось. Во сколько раз оно увеличится через 3 часа?

По условию дифференциальное уравнение процесса,

где k - коэффициент пропорциональности.

Разделяя переменные, получим: .

Отсюда, общее решение.

Найдем с из начального условия: при t=0, x=a. Отсюда, или c = a.

Подставляя в общее решение, получим частное решение задачи: .

Коэффициент пропорциональности определяем из данных дополнительных условий: при t=1час; x=2a.

Отсюда: , или. Подставляя в частное решение, получим закон рассматриваемого процесса: .

При t = 3часа, x = 8a. Следовательно, количество фермента спустя три часа увеличится в 8 раз.

Ответ: за три часа количество фермента увеличится в 8 раз.

вектор выходных переменных, Y= t ,

Z - вектор внешних воздействий, Z= t ,

t - координата времени.

Построение математической модели заключается в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат.

Обычно их оказывается настолько много, что ввести в модель всю их совокупность не удается. При построении математической модели перед исследованием возникает задача выявить и исключить из рассмотрения факторы, несущественно влияющие на конечный результат (математическая модель обычно включает значительно меньшее число факторов, чем в реальной действительности). На основе данных эксперимента выдвигаются гипотезы о связи между величинами, выражающими конечный результат, и факторами, введенными в математическую модель . Такая связь зачастую выражается системами дифференциальных уравнений в частных производных (например, в задачах механики твердого тела, жидкости и газа, теории фильтрации, теплопроводности, теории электростатического и электродинамического полей).

Конечной целью этого этапа является формулирование математической задачи, решение которой с необходимой точностью выражает результаты, интересующие специалиста.

Форма и принципы представления математической модели зависит от многих факторов.

По принципам построения математические модели разделяют на:

  1. аналитические;
  2. имитационные.

В аналитических моделях процессы функционирования реальных объектов, процессов или систем записываются в виде явных функциональных зависимостей .

Аналитическая модель разделяется на типы в зависимости от математической проблемы:

  1. уравнения (алгебраические, трансцендентные, дифференциальные, интегральные),
  2. аппроксимационные задачи ( интерполяция , экстраполяция, численное интегрирование и дифференцирование ),
  3. задачи оптимизации,
  4. стохастические проблемы.

Однако по мере усложнения объекта моделирования построение аналитической модели превращается в трудноразрешимую проблему. Тогда исследователь вынужден использовать имитационное моделирование .

В имитационном моделировании функционирование объектов, процессов или систем описывается набором алгоритмов. Алгоритмы имитируют реальные элементарные явления, составляющие процесс или систему с сохранением их логической структуры и последовательности протекания во времени. Имитационное моделирование позволяет по исходным данным получить сведения о состояниях процесса или системы в определенные моменты времени, однако прогнозирование поведения объектов, процессов или систем здесь затруднительно. Можно сказать, что имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями , имитирующими поведение реальных объектов, процессов или систем.

В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:

  1. детерминированные,
  2. стохастические.

В детерминированных моделях предполагается отсутствие всяких случайных воздействий, элементы модели (переменные, математические связи) достаточно точно установленные, поведение системы можно точно определить. При построении детерминированных моделей чаще всего используются алгебраические уравнения, интегральные уравнения, матричная алгебра .

Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.

По виду входной информации модели разделяются на:

  1. непрерывные,
  2. дискретные.

Если информация и параметры являются непрерывными, а математические связи устойчивы, то модель - непрерывная. И наоборот, если информация и параметры - дискретны, а связи неустойчивы, то и математическая модель - дискретная.

По поведению моделей во времени они разделяются на:

  1. статические,
  2. динамические.

Статические модели описывают поведение объекта, процесса или системы в какой-либо момент времени. Динамические модели отражают поведение объекта, процесса или системы во времени.

По степени соответствия между

Математическая модель является упрощением реальной ситуации и представляет собой абстрактный, формально описанный объект, изучение которого возможно различными математическими методами .

Рассмотрим классификацию математических моделей.

Математические модели делятся:

1. В зависимости от характера отображаемых свойств объекта:

· функциональные;

· структурные.

Функциональные математические модели предназначены для отображения информационных, физических, временных процессов, протекающих в работающем оборудовании, в ходе выполнения технологических процессов и т.д.

Таким образом, функциональные модели - отображают процессы функционирования объекта. Они имеют чаще всего форму системы уравнений.

Структурныемодели - могут иметь форму матриц, графов, списков векторов и выражать взаимное расположение элементов в пространстве. Эти модели обычно используют в случаях, когда задачи структурного синтеза удается ставить и решать, абстрагируясь от физических процессов в объекте. Они отражают структурные свойства проектируемого объекта.

Для получения статического представления моделируемого объекта может быть использована группа методов, называемых схематическими моделями - это методы анализа, включающие графическое представление работы системы. Например, технологические карты, диаграммы, многофункциональные диаграммы операций и блок-схемы.

2. По способам получения функциональных математических моделей:

· теоретические;

· формальные;

· эмпирические.

Теоретические получают на основе изучения физических закономерностей. Структура уравнений и параметры моделей имеют определенное физическое толкование.

Формальные получают на основе проявления свойств моделируемого объекта во внешней среде, т.е. рассмотрение объекта как кибернетического «черного ящика».

Теоретический подход позволяет получать модели более универсальные, справедливые для более широких диапазонов изменения внешних параметров.

Формальные - более точны в точке пространства параметров, в которой производились измерения.

Эмпирические математические модели создаются в результате проведения экспериментов (изучения внешних проявлений свойств объекта с помощью измерения его параметров на входе и выходе) и обработки их результатов методами математической статистики.

3. В зависимости от линейности и нелинейности уравнений:

· линейные ;

· нелинейные .

4. В зависимости от множества области определения и значений переменных модели бывают:

· непрерывные

· дискретные (области определения и значений непрерывны);

· непрерывно-дискретные (область определения непрерывна, а область значений дискретна). Эти модели иногда называют квантованными;

· дискретно-непрерывные (область определения дискретна, а область значений непрерывна). Эти модели называют дискретными;

· цифровые (области определения и значений дискретны)

5. По форме связей между выходными, внутренними и внешними параметрами:

· алгоритмические;

· аналитические;

· численные.

Алгоритмическими называют модели, представленных в виде алгоритмов, описывающих последовательность однозначно интерпретируемых операций, выполняемых для получения необходимого результата.

Алгоритмические математические модели выражают связи между выходными параметрами и параметрами входными и внутренними в виде алгоритма.

Аналитическими математическими моделями называется такое формализованное описание объекта (явления, процесса), которое представляют собой явные математические выражения выходных параметров как функций от входных и внутренних параметров.

Аналитическое моделирование основано на косвенном описании моделируемого объекта с помощью набора математических формул. Язык аналитического описания содержит следующие основные группы семантических элементов: критерий (критерии), неизвестные, данные, математические операции, ограничения. Наиболее существенная характеристика аналитических моделей заключается в том, что модель не является структурно подобной объекту моделирования. Под структурным подобием здесь понимается однозначное соответствие элементов и связей модели элементам и связям моделируемого объекта. К аналитическим относятся модели, построенные на основе аппарата математического программирования, корреляционного, регрессионного анализа. Аналитическая модель всегда представляет собой конструкцию, которую можно проанализировать и решить математическими средствами. Так, если используется аппарат математического программирования, то модель состоит в основе своей из целевой функции и системы ограничений на переменные. Целевая функция, как правило, выражает ту характеристику объекта (системы), которую требуется вычислить или оптимизировать. В частности, это может быть производительность технологической системы. Переменные выражают технические характеристики объекта (системы), в том числе варьируемые, ограничения – их допустимые предельные значения.

Аналитические модели являются эффективным инструментом для решения задач оптимизации процессов, протекающих в технологических системах, а также оптимизации и вычисления характеристик самих технологических систем.

Важным моментом является размерность конкретной аналитической модели. Часто для реальных технологических систем (автоматических линий, гибких производственных систем) размерность их аналитических моделей столь велика, что получение оптимального решения оказывается весьма сложным с вычислительной точки зрения. Для повышения вычислительной эффективности в этом случае используют различные приемы. Один из них связан с разбиением задачи большой размерности на подзадачи меньшей размерности так, чтобы автономные решения подзадач в определенной последовательности давали решение основной задачи. При этом возникают проблемы организации взаимодействия подзадач, которые не всегда оказываются простыми. Другой прием предполагает уменьшение точности вычислений, за счет чего удается сократить время решения задачи.

Аналитическая модель может быть исследована следующим методами:

· аналитическим, когда стремятся получить в общем виде зависимости для искомых характеристик;

· численными, когда стремятся получить числовые результаты при конкретных начальных данных;

· качественными, когда, имея решения в явном виде можно найти некоторые свойства решения (оценить устойчивость решения).

Однако аналитическое моделирование дает хорошие результаты в случае достаточно простых систем. В случае сложных систем требуется либо существенное упрощение первоначальной модели, чтобы изучить хотя бы общие свойства системы. Это позволяет получить ориентировочные результаты, а для определения более точных оценок использовать другие методы, например, имитационное моделирование.

Численная модель характеризуется зависимостью такого вида, которая допускает только решения, получаемые численными методами, для конкретных начальных условий и количественных параметров моделей.

6. В зависимости от того, учитывают уравнения модели инерционность процессов в объекте или не учитывают:

· динамические илиинерционные модели (записываются в виде дифференциальных или интегро-дифференциальных уравнений или систем уравнений);

· статические или неинерционные модели (записываютсяв виде алгебраических уравнений или систем алгебраических уравнений).

7. В зависимости от наличия или отсутствия неопределенностей и вида неопределенностей модели бывают:

· детерминированны е (неопределенности отсутствуют);

· стохастические (присутствуют неопределенности в виде случайных величин или процессов, описываемых статистическими методами в виде законов или функционалов распределений, а также числовыми характеристиками);

· нечеткие (для описания неопределенностей используется аппарат теории нечетких множеств) ;

· комбинированные (присутствуют неопределенности обоих видов).

В общем случае вид математической модели зависит не только от природы реального объекта, но и от тех задач, ради решения которых она создается, и требуемой точности их решения

Основные виды моделей представленные на рисунке 2.5.

Рассмотрим еще одну классификацию математических моделей. Эта классификация основана на понятии управляемости объекта управления.Все ММ разобьем условно на четыре группы. 1.Модели прогноза (расчетные модели без управления). Их можно разделить на статические и динамические .Основное назначение этих моделей: зная начальное состояние и информацию о поведение на границе, дать прогноз о поведении системы во времени и в пространстве. Такие модели могут быть и стохастическими.Как правило, модели прогнозирования описываются алгебраическими, трансцендентными, дифференциальными, интегральными, интегро-дифференциальными уравнениями и неравенствами. Примерами могут служить модели распределения тепла, электрического поля, химической кинетики, гидродинамики, аэродинамики и т.д. 2.Оптимизационные модели. Эти модели так же можно разделить на статические и динамические. Статические модели используются на уровне проектирования различных технологических систем. Динамические – как на уровне проектирования, так и, главным образом, для оптимального управления различными процессами – технологическими, экономическими и др.В задачах оптимизации имеется два направления. К первому относятся детерминированные задачи . Вся входная информация в них является полностью определяемой.Второе направление относится к стохастическим процессам . В этих задачах некоторые параметры носят случайный характер или содержат элемент неопределенности. Многие задачи оптимизации автоматических устройств, например, содержат параметры в виде случайных помех с некоторыми вероятностными характеристиками.Методы отыскания экстремума функции многих переменных с различными ограничениями часто называются методами математического программирования. Задачи математического программирования – одни из важных оптимизационных задач.В математическом программировании выделяются следующие основные разделы. · Линейное программирование . Целевая функция линейна, а множество, на котором ищется экстремум целевой функции, задается системой линейных равенств и неравенств. · Нелинейное программирование . Целевая функция нелинейная и нелинейные ограничения. · Выпуклое программирование . Целевая функция выпуклая и выпуклое множество, на котором решается экстремальная задача. · Квадратичное программирование . Целевая функция квадратичная, а ограничения – линейные. · Многоэкстремальные задачи. Задачи, в которых целевая функция имеет несколько локальных экстремумов. Такие задачи представляются весьма проблемными. · Целочисленное программирование. В подобных задачах на переменные накладываются условия целочисленности.

Рис. 4.8. Классификация математических моделей

Как правило, к задачам математического программирования неприменимы методы классического анализа для отыскания экстремума функции нескольких переменных.Модели теории оптимального управления – одни из важных в оптимизационных моделях. Математическая теория оптимального управления относится к одной из теорий, имеющих важные практические применения, в основном, для оптимального управления процессами. Различают три вида математических моделей теории оптимального управления. · Дискретные модели оптимального управления. Традиционно такие модели называют моделями динамического программирования, так как основной метод решения таких задач метод динамического программирования Беллмана. · Непрерывные модели оптимального управления системами с сосредоточенными параметрами (описываются уравнениями в обыкновенных производных). · Непрерывные модели оптимального управления системами с распределенными параметрами (описываются уравнениями в частных производных). 3. Кибернетические модели (игровые). Кибернетические модели используются для анализа конфликтных ситуаций. Предполагается, что динамический процесс определяется несколькими субъектами, в распоряжении которых имеется несколько управляющих параметров. С кибернетической системой ассоциируется целая группа субъектов со своими собственными интересами. 4. Имитационное моделирование . Вышеописанные типы моделей не охватывают большого числа различных ситуаций, таких, которые могут быть полностью формализованы. Для изучения таких процессов необходимо включение в математическую модель функционирующего «биологического» звена – человека. В таких ситуациях используется имитационное моделирование, а также методы экспертиз и информационных процедур.

Что такое математическая модель?

Понятие математической модели.

Математическая модель - очень простое понятие. И очень важное. Именно математические модели связывают математику и реальную жизнь.

Говоря простым языком, математическая модель - это математическое описание любой ситуации. И всё. Модель может быть примитивной, может быть и суперсложной. Какая ситуация, такая и модель.)

В любом (я повторяю - в любом! ) деле, где нужно чего-нибудь посчитать да рассчитать - мы занимаемся математическим моделированием. Даже если и не подозреваем об этом.)

Р = 2·ЦБ + 3·ЦМ

Вот эта запись и будет математической моделью расходов на наши покупки. Модель не учитывает цвет упаковки, срок годности, вежливость кассиров и т.п. На то она и модель, а не реальная покупка. Но расходы, т.е. то, что нам надо - мы узнаем точно. Если модель правильная, конечно.

Представлять, что такое математическая модель полезно, но этого мало. Самое главное - уметь эти модели строить.

Составление (построение) математической модели задачи.

Составить математическую модель - это значит, перевести условия задачи в математическую форму. Т.е. превратить слова в уравнение, формулу, неравенство и т.д. Причём превратить так, чтобы эта математика строго соответствовала исходному тексту. Иначе у нас получится математическая модель какой-то другой, неведомой нам задачи.)

Говоря конкретнее, нужно

Задач в мире - бесконечное количество. Поэтому предложить чёткую пошаговую инструкцию по составлению математической модели любой задачи - невозможно.

Но можно выделить три основных момента, на которые нужно обратить внимание.

1. В любой задаче есть текст, как ни странно.) В этом тексте, как правило, имеется явная, открытая информация. Числа, значения и т.п.

2. В любой задаче имеется скрытая информация. Это текст, который предполагает наличие дополнительных знаний в голове. Без них - никак. Кроме того, математическая информация частенько скрывается за простыми словами и... проскакивает мимо внимания.

3. В любой задаче должно быть дана связь данных между собой. Эта связь может быть дана открытым текстом (что-то равно чему-то), а может быть и скрыта за простыми словами. Но простые и понятные факты частенько упускаются из виду. И модель никак не составляется.

Сразу скажу: чтобы применить эти три момента, задачу приходится читать (и внимательно!) несколько раз. Обычное дело.

А теперь - примеры.

Начнём с простой задачки:

Петрович вернулся с рыбалки и гордо предъявил семье улов. При ближайшем рассмотрении оказалось, что 8 рыбин родом из северных морей, 20% всех рыбин - из южных, а из местной реки, где рыбачил Петрович - нет ни одной. Сколько всего рыбин купил Петрович в магазине "Морепродукты"?

Все эти слова нужно превратить в какое-то уравнение. Для этого нужно, повторюсь, установить математическую связь между всеми данными задачи.

С чего начинать? Сначала вытащим из задачи все данные. Начнём по порядочку:

Обращаем внимание на первый момент.

Какая здесь явная математическая информация? 8 рыбин и 20%. Не густо, да нам много и не надо.)

Обращаем внимание на второй момент.

Ищем скрытую информацию. Она здесь есть. Это слова: "20% всех рыбин ". Здесь нужно понимать, что такое проценты и как они считаются. Иначе задача не решается. Это как раз та дополнительная информация, которая должна быть в голове.

Здесь ещё имеется математическая информация, которую совершенно не видно. Это вопрос задачи: "Сколько всего рыбин купил..." Это ведь тоже какое-то число. И без него никакая модель не составится. Поэтому обозначим это число буквой "х". Мы пока не знаем, чему равен икс, но такое обозначение очень нам пригодится. Подробнее, что брать за икс и как с ним обращаться, написано в уроке Как решать задачи по математике? Вот так сразу и запишем:

х штук - общее количество рыб.

В нашей задаче южные рыбы даны в процентах. Надо их перевести в штуки. Зачем? Затем, что в любой задаче модели надо составлять в однотипных величинах. Штуки - так всё в штуках. Если даны, скажем часы и минуты - всё переводим во что-нибудь одно - или только часы, или только минуты. Не суть важно во что. Важно, чтобы все величины были однотипными.

Возвращаемся к раскрытию информации. Кто не знает, что такое процент, никогда не раскроет, да... А кто знает, тот сразу скажет, что проценты здесь от общего числа рыб даны. А нам это число неизвестно. Ничего не выйдет!

Общее количество рыб (в штуках!) мы не зря буквой "х" обозначили. Посчитать южных рыб в штуках не получится, но записать-то мы сможем? Вот так:

0,2·х штук - количество рыб из южных морей.

Вот теперь мы скачали всю информацию с задачи. И явную, и скрытую.

Обращаем внимание на третий момент.

Ищем математическую связь между данными задачи. Эта связь настолько проста, что многие её не замечают... Такое часто бывает. Здесь полезно просто записать собранные данные в кучку, да и посмотреть, что к чему.

Что у нас есть? Есть 8 штук северных рыб, 0,2·х штук - южных рыб и х рыб - общее количество. Можно связать эти данные как-то воедино? Да легко! Общее количество рыб равно сумме южных и северных! Ну кто бы мог подумать...) Вот и записываем:

х = 8 + 0,2х

Вот это уравнение и будет математической моделью нашей задачи.

Прошу заметить, что в этой задаче нас не просят ничего складывать! Это мы сами, из головы, сообразили, что сумма южных и северных рыб даст нам общее количество. Вещь настолько очевидная, что проскакивает мимо внимания. Но без этой очевидности математическую модель не составить. Вот так.

Теперь уже можно применить всю мощь математики для решения этого уравнения). Именно для этого и составлялась математическая модель. Решаем это линейное уравнение и получаем ответ.

Ответ: х=10

Составим математичесскую модель ещё одной задачки:

Спросили Петровича: "А много ли у тебя денег?" Заплакал Петрович и отвечает: "Да всего чуть-чуть. Если я потрачу половину всех денег, да половину остатка, то всего-то один мешок денег у меня и останется..." Сколько денег у Петровича?

Опять работаем по пунктам.

1. Ищем явную информацию. Тут её не сразу и обнаружишь! Явная информация - это один мешок денег. Есть ещё какие-то половинки... Ну, это во втором пункте разберём.

2. Ищем скрытую информацию. Это половинки. Чего? Не очень понятно. Ищем дальше. Есть ещё вопрос задачи: "Сколько денег у Петровича?" Обозначим количество денег буквой "х" :

х - все деньги

И вновь читаем задачу. Уже зная, что у Петровича х денег. Вот тут уже и половинки сработают! Записываем:

0,5·х - половина всех денег.

Остаток будет тоже половина, т.е. 0,5·х. А половину от половины можно записать так:

0,5·0,5·х = 0,25х - половина остатка.

Теперь вся скрытая информация выявлена и записана.

3. Ищем связь между записанными данными. Здесь можно просто читать страдания Петровича и записывать их математически):

Если я потрачу половину всех денег ...

Запишем этот процесс. Всех денег - х. Половина - 0,5·х . Потратить - это отнять. Фраза превращается в запись:

х - 0,5·х

да половину остатка...

Отнимем ещё половину остатка:

х - 0,5·х - 0,25х

то всего-то один мешок денег у меня и останется...

А вот и равенство нашлось! После всех вычитаний один мешок денег остаётся:

х - 0,5·х - 0,25х = 1

Вот она, математическая модель! Это опять линейное уравнение, решаем, получаем:

Вопрос на соображение. Четыре - это чего? Рубля, доллара, юаня? А в каких единицах у нас деньги в математической модели записаны? В мешках! Значит, четыре мешка денег у Петровича. Тоже неплохо.)

Задачки, конечно, элементарные. Это специально, чтобы уловить суть составления математической модели. В некоторых задачах может быть гораздо больше данных, в которых легко запутаться. Это часто бывает в т.н. компетентностных задачах. Как вытаскивать математическое содержание из кучи слов и чисел показано на примерах

Ещё одно замечание. В классических школьных задачах (трубы заполняют бассейн, куда-то плывут катера и т.п.) все данные, как правило, подобраны очень тщательно. Там выполняются два правила:
- информации в задаче хватает для её решения,
- лишней информации в задаче не бывает.

Это подсказка. Если осталась какая-то неиспользованная в математической модели величина - задумайтесь, нет ли ошибки. Если данных никак не хватает - скорее всего, не вся скрытая информация выявлена и записана.

В компетентностных и прочих жизненных задачах эти правила строго не соблюдаются. Нету подсказки. Но и такие задачи можно решать. Если, конечно, потренироваться на классических.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.