Все о тюнинге авто

Распространение ультразвука. Способы распространения ультразвука. Смотреть что такое "Ультразвук" в других словарях К какому виду колебаний относится ультразвук

13. Аку́стика (от греч. ἀκούω (аку́о) - слышу) - наука о звуке, изучающая физическую природу звука и проблемы, связанные с его возникновением, распространением, восприятием и воздействием. Акустика является одним из направлений физики (механики), исследующих упругие колебания и волны от самых низких (условно от 0 Гц) до высоких частот.

Акустика является междисциплинарной наукой, использующей для решения своих проблем широкий круг дисциплин: математику, физику, психологию, архитектуру, электронику, биологию, медицину, гигиену, теорию музыки и другие.

Иногда (в обиходе) под акустикой понимают также акустическую систему - электрическое устройство, предназначенное для преобразования тока переменной частоты в звуковые колебания при помощи электро-акустического преобразования. Также термин акустика применим для обозначения колебательных свойств, связанных с качеством распространения звука в какой-либо системе или каком-либо помещении, например, «хорошая акустика концертного зала».

Термин «акустика» (фр. acoustique ) был введён в 1701 году Ж. Совёром .

Тон в лингвистике - использование высоты звука для смыслоразличения в рамках слов/морфем. Тон следует отличать от интонации, то есть изменения высоты тона на протяжении сравнительно большого речевого отрезка (высказывания или предложения). Различные тоновые единицы, имеющие смыслоразличительную функцию, могут называться тонемами (по аналогии с фонемой).

Тон, как и интонация, фонация и ударение, относится к супрасегментным, или просодическим, признакам. Носителями тона чаще всего являются гласные, но встречаются языки, где в этой роли могут выступать и согласные, чаще всего сонанты.

Тоновым, или тональным, называется язык, в котором каждый слог произносится с определённым тоном. Разновидностью тоновых языков являются также языки с музыкальным ударением, в которых один или несколько слогов в слове являются выделенными, и разные типы выделения противопоставляются тоновыми признаками.

Тоновые противопоставления могут сочетаться с фонационными (таковы многие языки Юго-Восточной Азии).

Шум - беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры. Первоначально слово шум относилось исключительно к звуковым колебаниям, однако в современной науке оно было распространено и на другие виды колебаний (радио-, электричество).

Шум - совокупность апериодических звуков различной интенсивности и частоты. С физиологической точки зрения шум - это всякий неблагоприятный воспринимаемый звук.

Акустический, звуковой удар - это звук ассоциируемый с ударными волнами, созданными сверхзвуковым полётом самолёта. Акустический удар создаёт огромное количество звуковой энергии, похожей на взрыв. Звук удара хлыста - наглядный пример акустического удара. Это момент, когда самолёт преодолевает звуковой барьер, то, пробивая собственную звуковую волну, он создаёт мощный мгновенный большой силы звук, распространяющийся в стороны. Но на самом летящем самолёте он не слышен, поскольку звук от него "отстал". Звук напоминает выстрел сверхмощной пушки, сотрясающий весь небосвод и поэтому сверхзвуковым самолётам рекомендовано переходить на сверхзвук подальше от городов, чтобы не беспокоить и не пугать граждан

Физические параметры звука

Колебательная скорость измеряется в м/с или см/с. В энергетическом отношении реальные колебательные системы характеризуются изменением энергии вследствие частичной её затраты на работу против сил трения и излучение в окружающее пространство. В упругой среде колебания постепенно затухают. Для характеристики затухающих колебаний используются коэффициент затухания (S), логарифмический декремент (D) и добротность (Q).

Коэффициент затухания отражает быстроту убывания амплитуды с течением времени. Если обозначить время, в течение которого амплитуда уменьшается в е = 2,718 раза, через , то:

Уменьшение амплитуды за один цикл характеризуется логарифмическим декрементом. Логарифмический декремент равен отношению периода колебаний ко времени затухания :

Если на колебательную систему с потерями действовать периодической силой, то возникают вынужденные колебания , характер которых в той или иной мере повторяет изменения внешней силы. Частота вынужденных колебаний не зависит от параметров колебательной системы. Напротив, амплитуда зависит от массы, механического сопротивления и гибкости системы. Такое явление, когда амплитуда колебательной скорости достигает максимального значения, называется механическим резонансом. При этом частота вынужденных колебаний совпадает с частотой собственных незатухающих колебаний механической системы.

При частотах воздействия, значительно меньших резонансной, внешняя гармоническая сила уравновешивается практически только силой упругости. При частотах возбуждения, близких к резонансной, главную роль играют силы трения. При условии, когда частота внешнего воздействия значительно больше резонансной, поведение колебательной системы зависит от силы инерции или массы.

Свойство среды проводить акустическую энергию, в том числе и ультразвуковую, характеризуется акустическим сопротивлением. Акустическое сопротивление среды выражается отношением звуковой плотности к объёмной скорости ультразвуковых волн. Удельное акустическое сопротивление среды устанавливается соотношением амплитуды звукового давления в среде к амплитуде колебательной скорости её частиц. Чем больше акустическое сопротивление, тем выше степень сжатия и разрежения среды при данной амплитуде колебания частиц среды. Численно, удельное акустическое сопротивление среды (Z) находится как произведение плотности среды () на скорость (с) распространения в ней ультразвуковых волн.

Удельное акустическое сопротивление измеряется в паскаль -секунда на метр (Па·с/м) или дин с/см³ (СГС); 1 Па·с/м = 10 −1 дин с/см³.

Значение удельного акустического сопротивления среды часто выражается в г/с·см², причём 1 г/с·см² = 1 дин с/см³. Акустическое сопротивление среды определяется поглощением, преломлением и отражением ультразвуковых волн.

Звуковое или акустическое давление в среде представляет собой разность между мгновенным значением давления в данной точке среды при наличии звуковых колебаний и статического давления в той же точке при их отсутствии. Иными словами, звуковое давление есть переменное давление в среде, обусловленное акустическими колебаниями. Максимальное значение переменного акустического давления (амплитуда давления) может быть рассчитано через амплитуду колебания частиц:

где Р - максимальное акустическое давление (амплитуда давления);

На расстоянии в половину длины волны (λ/2) амплитудное значение давления из положительного становится отрицательным, то есть разница давлений в двух точках, отстоящих друг от друга на λ/2 пути распространения волны, равна 2Р.

Для выражения звукового давления в единицах СИ используется Паскаль (Па), равный давлению в один ньютон на метр квадратный (Н/м²). Звуковое давление в системе СГС измеряется в дин/см²; 1 дин/см² = 10 −1 Па = 10 −1 Н/м². Наряду с указанными единицами часто пользуются внесистемными единицами давления - атмосфера (атм) и техническая атмосфера (ат), при этом 1 ат = 0,98·10 6 дин/см² = 0,98·10 5 Н/м². Иногда применяется единица, называемая баром или микробаром (акустическим баром); 1 бар = 10 6 дин/см².

Давление, оказываемое на частицы среды при распространении волны, является результатом действия упругих и инерционных сил. Последние вызываются ускорениями, величина которых также растёт в течение периода от нуля до максимума (амплитудное значение ускорения). Кроме того, в течение периода ускорение меняет свой знак.

Максимальные значения величин ускорения и давления, возникающие в среде при прохождении в ней ультразвуковых волн, для данной частицы не совпадают во времени. В момент, когда перепад ускорения достигает своего максимума, перепад давления становится равным нулю. Амплитудное значение ускорения (а) определяется выражением:

Если бегущие ультразвуковые волны наталкиваются на препятствие, оно испытывает не только переменное давление, но и постоянное. Возникающие при прохождении ультразвуковых волн участки сгущения и разряжения среды создают добавочные изменения давления в среде по отношению к окружающему её внешнему давлению. Такое добавочное внешнее давление носит название давления излучения (радиационного давления). Оно служит причиной того, что при переходе ультразвуковых волн через границу жидкости с воздухом образуются фонтанчики жидкости и происходит отрыв отдельных капелек от поверхности. Этот механизм нашёл применение в образовании аэрозолей лекарственных веществ. Радиационное давление часто используется при измерении мощности ультразвуковых колебаний в специальных измерителях - ультразвуковых весах.

Интенсивность звука (абсолютная) - величина, равная отношению потока звуковой энергии dP через поверхность, перпендикулярную направлению распространения звука , к площади dS этой поверхности:

Единица измерения - ватт на квадратный метр (Вт/м 2).

Для плоской волны интенсивность звука может быть выражена через амплитуду звукового давления p 0 и колебательную скорость v :

,

где Z S - среды.

Громкость звука - субъективная характеристика, котрорая зависит от амплитуды, а значит от энергии звуковой волны. Чем больше энергия, тем больше давление звуковой волны.

Уровень интенсивности - это объективная характеристика звука.

Интенсивность - отношение падающей на поверхности звуковой мощности к площади этой поверхности. Измеряется в Вт/м 2 (ватт на кв. метр).

Уровень интенсивности определяет во сколько раз интенсивность звука больше, чем минимальная интенсивность, воспринимаемая человеческим ухом.

Поскольку минимальная чувствительность, воспринимаемая человеком 10 -12 Вт/м 2 отличается от максимальной, вызывающей болевые ощущения - 10 13 Вт/м 2 , на много порядков, то используется логарифм отношения интенсивности звука к минимальной интенсивности.

Здесь k - уровень интенсивности, I - интенсивность звука, I 0 - минимальная интенсивность звука, воспринимаемая человеком или пороговая интенсивность.

Смысл логарифма в данной формуле - если интенсивность I изменяется на порядок, то уровень интенсивности при этом изменяется на единицу .

Единица измерения уровня интенсивности - 1 Б (Белл). 1 Белл - уровень интенсивности, которая в 10 раз превышает пороговую.

На практике уровень интенсивности измеряетсяв дБ (дециБеллах). Тогда формула для вычисления уровня интенсивности переписывается так:

Звуково́е давле́ние - переменное избыточное давление , возникающее в упругой среде при прохождении через неё звуковой волны . Единица измерения - паскаль (Па).

Мгновенное значение звукового давления в точке среды изменяется как со временем, так и при переходе к другим точкам среды, поэтому практический интерес представляет среднеквадратичное значение данной величины, связанное с интенсивностью звука :

где - интенсивность звука , - звуковое давление, - удельное акустическое сопротивление среды, - усреднение по времени.

При рассмотрении периодических колебаний иногда используют амплитуду звукового давления; так, для синусоидальной волны

где - амплитуда звукового давления.

Уровень звукового давления (англ. SPL, Sound Pressure Level ) - измеренное по относительной шкале значение звукового давления, отнесённое к опорному давлению = 20 мкПа, соответствующему порогу слышимости синусоидальной звуковой волны частотой 1 кГц:

дБ.

Гро́мкость зву́ка - субъективное восприятие силы звука (абсолютная величина слухового ощущения). Громкость главным образом зависит от звукового давления , амплитуды и частоты звуковых колебаний. Также на громкость звука влияют его спектральный состав, локализация в пространстве, тембр, длительность воздействия звуковых колебаний и другие факторы (см. , ).

Единицей абсолютной шкалы громкости является фон . Громкость в 1 фон - это громкость непрерывного чистого синусоидального тона частотой 1 кГц , создающего звуковое давление 2 мПа .

Уровень громкости звука - относительная величина. Она выражается в фонах и численно равна уровню звукового давления децибелах - дБ), создаваемого синусоидальным тоном частотой 1 кГц такой же громкости, как и измеряемый звук (равногромким данному звуку).

Зависимость уровня громкости от звукового давления и частоты

На рисунке справа изображено семейство кривых равной громкости, называемых также изофонами . Они представляют собой графики стандартизированных (международный стандарт ISO 226 ) зависимостей уровня звукового давления от частоты при заданном уровне громкости. С помощью этой диаграммы можно определить уровень громкости чистого тона какой-либо частоты, зная уровень создаваемого им звукового давления.

Средства звукового наблюдения

Например, если синусоидальная волна частотой 100 Гц создаёт звуковое давление уровнем 60 дБ, то, проведя прямые, соответствующие этим значениям на диаграмме, находим на их пересечении изофону, соответствующую уровню громкости 50 фон. Это значит, что данный звук имеет уровень громкости 50 фон.

Изофона «0 фон», обозначенная пунктиром, характеризует порог слышимости звуков разной частоты для нормального слуха .

На практике часто представляет интерес не уровень громкости, выраженный в фонах, а величина, показывающая, во сколько данный звук громче другого. Представляет интерес также вопрос о том, как складываются громкости двух разных тонов. Так, если имеются два тона разных частот с уровнем 70 фон каждый, то это не значит, что суммарный уровень громкости будет равен 140 фон.

Зависимость громкости от уровня звукового давления (и интенсивности звука ) является сугубо нелинейной

кривой, она имеет логарифмический характер. При увеличении уровня звукового давления на 10 дБ громкость звука возрастёт в 2 раза. Это значит, что уровням громкости 40, 50 и 60 фон соответствуют громкости 1, 2 и 4 сона.

физические основы звуковых методов исследования в клинике

Звук, как и свет, является источником информации, и в этом его главное значение. Звуки природы, речь окружающих нас людей, шум работающих машин многое сообщают нам. Чтобы представить значение звука для человека, достаточно временно лишить себя возможности воспринимать звук – закрыть уши. Естественно, что звук может быть и источником информации о состоянии внутренних органов человека.

Распространенный звуковой метод диагностики заболеваний – аускультация (выслушивание). Для ау-скультации используют стетоскоп или фонендоскоп. Фонендоскоп состоит из полой капсулы с передающей звук мембраной, прикладываемой к телу больного, от нее идут резиновые трубки к уху врача. В полой капсуле возникает резонанс столба воздуха, вследствие чего усиливается звучание и улучшается ау-скультация. При аускультации легких выслушивают дыхательные шумы, разные хрипы, характерные для заболеваний. По изменению тонов сердца и появлению шумов можно судить о состоянии сердечной деятельности. Используя аускультацию, можно установить наличие перистальтики желудка и кишечника, прослушать сердцебиение плода.

Для одновременного выслушивания больного несколькими исследователями с учебной целью или при консилиуме используют систему, в которую входят микрофон, усилитель и громкоговоритель или несколько телефонов.

Длядиагностики состояния сердечной деятельности применяется метод, подобный аускультации и называемый фонокардиографией (ФКГ). Этот метод заклю16б чается в графической регистрации тонов и шумов сердца и их диагностической интерпретации. Запись фонокардиограммы производят с помощью фонокардиографа, состоящего из микрофона, усилителя, системы частотных фильтров и регистрирующего устройства.

Принципиально отличным от двух изложенных выше звуковых методов является перкуссия. При этом методе выслушивают звучание отдельных частей тела при их простукивании. Схематично тело человека можно представить как совокупность газонаполненных (легких), жидких (внутренние органы) и твердых (кость) объемов. При ударе по поверхности тела возникают колебания, частоты которых имеют широкий диапазон. Из этого диапазона одни колебания погаснут довольно быстро, другие же, совпадающие с собственными колебаниями пустот, усилятся и вследствие резонанса будут слышимы. Опытный врач по тону перкуторных звуков определяет состояние и расположение (тонографию) внутренних органов.

15. Инфразву́к (от лат. infra - ниже, под) - звуковые волны имеющие частоту ниже воспринимаемой человеческим ухом. Поскольку обычно человеческое ухо способно слышать звуки в диапазоне частот 16 - 20000 Гц, то за верхнюю границу частотного диапазона инфразвука обычно принимают 16 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десяток секунд.

Природа возникновения инфразвуковых колебаний такая же, как и у слышимого звука, поэтому инфразвук подчиняется тем же закономерностям, и для его описания используется такой же математический аппарат, как и для обычного слышимого звука (кроме понятий, связанных с уровнем звука). Инфразвук слабо поглощается средой, поэтому может распространяться на значительные расстояния от источника. Из-за очень большой длины волны ярко выражена дифракция.

Инфразвук, образующийся в море, называют одной из возможных причин нахождения судов, покинутых экипажем (см. Бермудский треугольник, Корабль-призрак).

Инфразвук. Действие инфразвука на биологические объекты.

Инфразвук - колебательные процессы с частотами ниже 20 Гц. Инфразвуки – не воспринимаются слухом человека.

Инфразвук оказывает неблагоприятное влияние на функциональное состояние ряда систем организма: усталость, головная боль, сонливость, раздражение и др.

Предполагается, что первичный механизм действия инфразвука на организм имеет резонансную природу.

Ультразвук, методы его получения. Физические характеристики и особенности распространения ультразвуковых волн. Взаимодействие ультразвука с веществом. Кавитация. Применение ультразвука: эхолокация, диспергирование, дефектоскопия, ультразвуковое резание.

Ультразвуком – (УЗ) называют механические колебания и волны, частоты которых более 20 кГц.

Для получения УЗ используется устройства, называемые УЗ – излучателем. Наибольшее распространение получили электромеханические излучатели, основанные на явление обратного пьезоэлектрического эффекта.

По своей физической природе Ультразвук представляет собой упруги волны и в этом он не отличается от звука . от 20 000 до миллиарда Гц. Принципиальной физической чертой звуковых колебаний является амплитуда волны, либо амплитуда смещения.

Ультразвук в газах и, в частности, в воздухе распространяется с большим затуханием. Жидкости и твёрдые тела (в особенности монокристаллы) представляют собой, как правило, хорошие проводники. Ультразвук, затухание, в которых значительно меньше. Так, например, в воде затухание Ультразвук при прочих равных условиях приблизительно в 1000 раз меньше, чем в воздухе.

Кавитация – сжатия и разрежения, создаваемые ультразвуком, приводят к образованию разрывов сплошности жидкости.

Применение ультразвука:

Эхолокация - способ, при помощи которого положение объекта определяется по времени задержки возвращений отражённой волны.

Диспергирование - Размельчение твердых веществ или жидкостей под действием ультразвуковых колебаний.

Дефектоскопия - поиск дефектов в материале изделия ультразвуковым методом, то есть путём излучения и принятия ультразвуковых колебаний, и дальнейшего анализа их амплитуды, времени прихода, формы и пр. с помощью специального оборудования - ультразвукового дефектоскопа .

Ультразвуковое резание - основано на сообщении режущему инструменту УЗ механических колебаний, что в значительной мере снижает усилие резания, себестоимость оборудования и повышает качество изготавливаемых изделий (нарезания резьб, сверления, точения, фрезерования). УЗ резание находит в медицине для рассечения биологических тканей.

Действие ультразвука на биологические объекты. Применение ультразвука для диагностики и для лечения. Ультразвуковая хирургия. Преимущества ультразвуковых методов.

Физические процессы, обусловленные воздействием УЗ, вызывают в биологических объектах следующие основные эффекты.

Микровибрации на клеточном и субклеточном уровне;

Разрушение биомакромолекул;

Перестройку и повреждение биологических мембран, изменение проницаемости мембран;

Тепловое действие;

Разрушение клеток и микроорганизмов.

Медико-биологические приложения ультразвука можно в основном разделить на два направления: методы диагностики и исследования и методы воздействия.

Метод диагностики:

1) относятся локационные методы и использованием главным образом импульсного излучения.

Z: энцефалография – определение опухолей и отека головного мозга, ультразвуковое кардиография – измерение размера сердца в динамике; в офтальмологии – ультразвуковая локация для определения размеров глазных сред. С помощью эффекта Доплера изучается характер движения сердечных клапанов, измеряется скорость кровотока.

2) К лечению относят ультразвуковая физиотерапия . Обычно на пациента воздействуют частотой 800 кГц.

Первичным механизмом ультразвуковой терапии являются механическое и тепловое действия на ткань.

При лечение таких заболеваний как астма, туберкулез и т.д. применяю аэрозоли различных лекарственных веществ полученным с помощью ультразвука.

При операциях ультразвук применяют как “ультразвуковой скальпель”, способный рассекать и мягкие и костные ткани. В настоящее время разработан новый метод “сваривания” поврежденных или трансплантируемых костных тканей с помощью ультразвука (ультразвуковой остеосинтез).

Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.

Эффект Доплера и его использование в медицине.

Эффектом Доплера называют изменение частоты волн, воспринимаемых наблюдателем (приемником волн), вследствие относительного движения источника волн и наблюдателя.

Эффект был впервые описан Кристианом Доплером в 1842 году.

Эффект Доплера используется для определения скорости кровотока, скорости движения клапанов и стенок сердца (доплеровская эхокардиография) и других органов.

Проявление эффекта Доплера широко используется в различных медицинских приборах, использующих, как правило, ультразвуковые волны в МГц диапазоне частот.

Например, отражённые от красных кровяных телец ультразвуковые волны можно использовать для определения скорости кровотока. Аналогичным образом этот метод можно применять для обнаружения движения грудной клетки зародыша, а также для дистанционного контроля за сердцебиениями.

16. Ультразву́к - упругие колебания с частотой за пределом слышимости для человека. Обычно ультразвуковым диапазоном считают частоты выше 18 000 герц.

Хотя о существовании ультразвука известно давно, его практическое использование достаточно молодо. В наше время ультразвук широко применяется в различных физических и технологических методах. Так, по скорости распространения звука в среде судят о её физических характеристиках. Измерения скорости на ультразвуковых частотах позволяет с весьма малыми погрешностями определять, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоемкости газов, упругие постоянные твердых тел.

Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне порядка нескольких МГц. Такие колебания обычно создают с помощью пьезокерамических преобразователей из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве.

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твердого тела, которое и излучает в окружающую среду акустические волны.

Физические свойства ультразвука

Применение ультразвука в медицинской диагностике связано с возможностью получения изображения внутренних органов и структур. Основой метода является взаимодействие ультразвука с тканями тела человека. Собственно получение изображения можно разделить на две части. Первая - излучение коротких ультразвуковых импульсов, направленное в исследуемые ткани и второе - формирование изображения на основе отраженных сигналов. Понимание принципа работы ультразвуковой диагностической установки, знание основ физики ультразвука и его взаимодействия с тканями тела человека помогут избежать механического, бездумного использования прибора и, следовательно, более грамотно подходить к процессу диагностики.

Звук - это механическая продольная волна, в которой колебания частиц находятся в той же плоскости, что и направление распространения энергии (рис. 1).

Рис. 1. Визуальное и графическое представление изменений давления и плотности в ультразвуковой волне.

Волна переносит энергию, но не материю. В отличие от электромагнитных волн (свет, радиоволны и т.д.) для распространения звука необходима среда - он не может распространяться в вакууме. Как и все волны, звук можно описать рядом параметров. Это частота, длина волны, скорость распространения в среде, период, амплитуда и интенсивность. Частота, период, амплитуда и интенсивность определяются источником звука, скорость распространения - средой, а длина волны - и источником звука и средой. Частота - это число полных колебаний (циклов) за период времени в 1 секунду (рис. 2).

Рис. 2. Частота ультразвуковой волны 2 цикла в 1 с = 2 Гц

Единицами измерения частоты являются герц (Гц) и мегагерц (МГц). Один герц - это одно колебание в секунду. Один мегагерц = 1000000 герц. Что же делает звук "ультра"? Это частота. Верхняя граница слышимого звука - 20000 Гц (20 килогерц (кГц)) - является нижней границей ультра­звукового диапазона. Ультра­звуковые локаторы летучих мышей работают в диапазоне 25÷500 кГц. В современных ультра­звуковых приборах для получения изображения используется ультразвук частотой от 2 МГц и выше. Период - это время, необходимое для получения одного полного цикла колебаний (рис. 3).

Рис. 3. Период ультразвуковой волны.

Единицами измерения периода являются секунда (с) и микросекунда (мксек). Одна микросекунда является одной миллионной долей секунды. Период (мксек) = 1/частота (МГц). Длина волны - это длина, которую занимает в пространстве одно колебание (рис. 4).

Рис. 4. Длина волны.

Единицы измерения - метр (м) и миллиметр (мм). Скорость распространения ультразвука - это скорость, с которой волна перемещается в среде. Единицами скорости распространения ультразвука являются метр в секунду (м/с) и миллиметр в микросекунду (мм/мксек). Скорость распространения ультразвука определяется плотностью и упругостью среды. Скорость распространения ультразвука увеличивается при увеличении упругости и уменьшении плотности среды. В таблице 2.1 представлены скорости распространения ультразвука в некоторых тканях тела человека.

Таблица 2.1. Скорость распространения ультразвука в мягких тканях

Ткань

Скорость распространения ультразвука в мм/мксек

Жировая ткань

Мягкие ткани (усреднение)

Вода (20°С)

Усредненная скорость распространения ультразвука в тканях тела человека составляет 1540 м/с - на эту скорость запрограммировано большинство ультразвуковых диагностических приборов. Скорость распространения ультразвука (С), частота (f) и длина волны (λ) связаны между собой следующим уравнением: С = f × λ. Так как в нашем случае скорость считается постоянной (1540 м/с), то оставшиеся две переменные f и λ связаны между собой обратно пропорциональной зависимостью. Чем выше частота, тем меньше длина волны и тем меньше размеры объектов, которые мы можем увидеть. Еще одним важным параметром среды является акустическое сопротивление (Z). Акустическое сопротивление - это произведение значения плотности среды и скорости распространения ультразвука. Сопротивление (Z) = плотность (р) × скорость распространения (С).

Для получения изображения в ультразвуковой диагностике используется не ультразвук, который излучается трансдьюсером непрерывно (постоянной волной), а ультразвук излучаемый в виде коротких импульсов (импульсный). Он генерируется при приложении к пьезоэлементу коротких электрических импульсов. Для характеристики импульсного ультразвука используются дополнительные параметры. Частота повторения импульсов - это число импульсов излучаемых в единицу времени (секунду). Частота повторения импульсов из меряете я в герцах (Гц) и килогерцах (кГц). Продолжительность импульса - это временная протяженность одного импульса (рис. 5).

Рис. 5. Продолжительность ультразвукового импульса.

Измеряется в секундах (с) и микросекундах (мксек). Фактор занятости - это часть времени, в которое происходит излучение (в форме импульсов) ультразвука. Пространственная протяженность импульса (ППИ) - это длина пространства, в котором размещается один ультразвуковой импульс (рис. 6).

Рис. 6. Пространственная протяженность импульса.

Для мягких тканей пространственная протяженность импульса (мм) равна произведению 1,54 (скорость распространения ультразвука в мм/мксек) и числа колебаний (циклов) в импульсе (n), отнесенному к частоте в МГц. Или ППИ = 1,54 × n/f. Уменьшения пространственной протяженности импульса можно достичь (а это очень важно для улучшения осевой разрешающей способности) за счет уменьшения числа колебаний в импульсе или увеличения частоты. Амплитуда ультразвуковой волны - это максимальное отклонение наблюдаемой физической переменной от среднего значения (рис. 7).

Рис. 7. Амплитуда ультразвуковой волны

Интенсивность ультразвука - это отношение мощности волны к площади, по которой распределяется ультразвуковой поток. Измеряется в ваттах на квадратный сантиметр (Вт/кв.см). При равной мощности излучения чем меньше площадь потока, тем выше интенсивность. Интенсивность также пропорциональна квадрату амплитуды. Так, если амплитуда удваивается, то интенсивность учетверяется. Интенсивность неоднородна как по площади потока, так и, в случае импульсного ультразвука, во времени.

При прохождении через любую среду будет наблюдаться уменьшение амплитуды и интенсивности ультразвукового сигнала, которое называется затуханием. Затухание ультразвукового сигнала вызывается поглощением, отражением и рассеиванием. Единицей затухания является децибел (дБ). Коэффициент затухания - это ослабление ультразвукового сигнала на единицу длины пути этого сигнала (дБ/см). Коэффициент затухания возрастает с увеличением частоты. Усредненные коэффициенты затухания в мягких тканях и уменьшение интенсивности эхосигнала в зависимости от частоты представлены в таблице 2.2.

Таблица 2.2. Усредненные коэффициенты затухания в мягких тканях

Частота, МГц

Усреднённый коэффициент затухания для мягких тканей, дБ/см

Уменьшение интенсивности по глубине

1 см (%)

10 см (%)

) и музыкальные звуки (из которых состоит музыка). Музыкальные звуки содержат не один, а несколько тонов, а иногда и шумовые компоненты в широком диапазоне частот.

Понятие о звуке

Звуковые волны в воздухе - чередующиеся области сжатия и разрежения.

Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение - звуковым давлением .

Если произвести резкое смещение частиц упругой среды в одном месте, например с помощью поршня, то в этом месте увеличится давление. Благодаря упругим связям частиц давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разрежения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн.

В философии, психологии и экологии средств коммуникации звук исследуется в связи с его воздействием на восприятие и мышление (речь идёт, например, об акустическом пространстве как пространстве, создаваемом воздействием электронных средств коммуникации).

Физические параметры звука

Скорость звука в воздухе зависит от температуры и в нормальных условиях составляет примерно 340 м/с.

Скорость звука в любой среде вычисляется по формуле:

c = 1 β ρ {\displaystyle c={\sqrt {\frac {1}{\beta \rho }}}} ,

где β {\displaystyle \beta } - адиабатическая сжимаемость среды; ρ {\displaystyle \rho } - плотность.

Громкость звука

Гро́мкость зву́ка - субъективное восприятие силы звука (абсолютная величина слухового ощущения). Громкость главным образом зависит от звукового давления , амплитуды и частоты звуковых колебаний. Также на громкость звука влияют его спектральный состав, локализация в пространстве, тембр, длительность воздействия звуковых колебаний, индивидуальная чувствительность слухового анализатора человека и другие факторы .

Генерация звука

Обычно для генерации звука применяются колеблющиеся тела различной природы, вызывающие колебания окружающего воздуха. Примером такой генерации может служить использование голосовых связок , динамиков или камертона . Большинство музыкальных инструментов основано на том же принципе. Исключением являются духовые инструменты , в которых звук генерируется за счёт взаимодействия потока воздуха с неоднородностями в инструменте. Для создания когерентного звука применяются так называемые звуковые или фононные лазеры .

Ультразвуковая диагностика

Ультразвук - упругие звуковые колебания высокой частоты . Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16 Гц-20 кГц ; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости).

Распространение ультразвука

Распространение ультразвука - это процесс перемещения в пространстве и во времени возмущений, имеющих место в звуковой волне.

Звуковая волна распространяется в веществе, находящемся в газообразном, жидком или твёрдом состоянии, в том же направлении, в котором происходит смещение частиц этого вещества, то есть она вызывает деформацию среды. Деформация заключается в том, что происходит последовательное разрежение и сжатие определённых объёмов среды, причём расстояние между двумя соседними областями соответствует длине ультразвуковой волны. Чем больше удельное акустическое сопротивление среды, тем больше степень сжатия и разрежения среды при данной амплитуде колебаний.

Частицы среды, участвующие в передаче энергии волны, колеблются около положения своего равновесия. Скорость, с которой частицы колеблются около среднего положения равновесия называется колебательной скоростью. Колебательная скорость частиц изменяется согласно уравнению:

V = U sin ⁡ (2 π f t + G) {\displaystyle V=U\sin(2\pi ft+G)} ,

где V - величина колебательной скорости;

  • U - амплитуда колебательной скорости;
  • f - частота ультразвука;
  • t - время;
  • G - разность фаз между колебательной скоростью частиц и переменным акустическим давлением.

Амплитуда колебательной скорости характеризует максимальную скорость, с которой частицы среды движутся в процессе колебаний, и определяется частотой колебаний и амплитудой смещения частиц среды.

U = 2 π f A {\displaystyle U=2\pi fA} ,

Дифракция, интерференция

При распространении ультразвуковых волн возможны явления дифракции, интерференции и отражения.

Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковой волны сравнима (или больше) с размерами находящегося на пути препятствия. Если препятствие по сравнению с длиной акустической волны велико, то явления дифракции нет.

При одновременном движении в среде нескольких ультразвуковых волн в каждой определённой точке среды происходит суперпозиция (наложение) этих волн. Наложение волн одинаковой частоты друг на друга называется интерференцией. Если в процессе прохождения через объект ультразвуковые волны пересекаются, то в определённых точках среды наблюдается усиление или ослабление колебаний. При этом состояние точки среды, где происходит взаимодействие, зависит от соотношения фаз ультразвуковых колебаний в данной точке. Если ультразвуковые волны достигают определённого участка среды в одинаковых фазах (синфазно), то смещения частиц имеют одинаковые знаки и интерференция в таких условиях приводит к увеличению амплитуды колебаний. Если же волны приходят к точке среды в противофазе, то смещение частиц будет разнонаправленным, что приводит к уменьшению амплитуды колебаний.

Поглощение ультразвуковых волн

Поскольку среда, в которой распространяется ультразвук, обладает вязкостью, теплопроводностью и имеет другие причины внутреннего трения, то при распространении волны происходит поглощение, то есть по мере удаления от источника амплитуда и энергия ультразвуковых колебаний становятся меньше. Среда, в которой распространяется ультразвук, вступает во взаимодействие с проходящей через него энергией и часть её поглощает. Преобладающая часть поглощённой энергии преобразуется в тепло, меньшая часть вызывает в передающем веществе необратимые структурные изменения. Поглощение является результатом трения частиц друг об друга, в различных средах оно различно. Поглощение зависит также от частоты ультразвуковых колебаний. Теоретически, поглощение пропорционально квадрату частоты.

Величину поглощения можно характеризовать коэффициентом поглощения, который показывает, как изменяется интенсивность ультразвука в облучаемой среде. С ростом частоты он увеличивается. Интенсивность ультразвуковых колебаний в среде уменьшается по экспоненциальному закону. Этот процесс обусловлен внутренним трением, теплопроводностью поглощающей среды и её структурой. Его ориентировочно характеризует величина полупоглощающего слоя, которая показывает на какой глубине интенсивность колебаний уменьшается в два раза (точнее в 2,718 раза или на 63 %). По Пальману, при частоте, равной 0,8 МГц, средние величины полупоглощающего слоя для некоторых тканей таковы: жировая ткань - 6,8 см; мышечная - 3,6 см; жировая и мышечная ткани вместе - 4,9 см. С увеличением частоты ультразвука величина полупоглощающего слоя уменьшается. Так, при частоте, равной 2,4 МГц, интенсивность ультразвука, проходящего через жировую и мышечную ткани, уменьшается в два раза на глубине 1,5 см.

Кроме того, возможно аномальное поглощение энергии ультразвуковых колебаний в некоторых диапазонах частот - это зависит от особенностей молекулярного строения данной ткани. Известно, что 2/3 энергии ультразвука затухает на молекулярном уровне и 1/3 на уровне микроскопических тканевых структур.

Глубина проникновения ультразвуковых волн

Под глубиной проникновения ультразвука понимают глубину, при которой интенсивность уменьшается вдвое. Эта величина обратно пропорциональна поглощению: чем сильнее среда поглощает ультразвук, тем меньше расстояние, на котором интенсивность ультразвука ослабляется наполовину.

Рассеяние ультразвуковых волн

Если в среде имеются неоднородности, то происходит рассеяние звука, которое может существенно изменить простую картину распространения ультразвука и, в конечном счете, также вызвать затухание волны в первоначальном направлении распространения.

Преломление ультразвуковых волн

Так как акустическое сопротивление мягких тканей человека ненамного отличается от сопротивления воды, можно предполагать, что на границе раздела сред (эпидермис - дерма - фасция - мышца) будет наблюдаться преломление ультразвуковых волн.

Отражение ультразвуковых волн

На явлении отражения основана ультразвуковая диагностика. Отражение происходит в приграничных областях кожи и жира, жира и мышц, мышц и костей. Если ультразвук при распространении наталкивается на препятствие, то происходит отражение, если препятствие мало, то ультразвук его как бы обтекает. Неоднородности организма не вызывают значительных отклонений, так как по сравнению с длиной волны (2 мм) их размерами (0,1-0,2 мм) можно пренебречь. Если ультразвук на своём пути наталкивается на органы, размеры которых больше длины волны, то происходит преломление и отражение ультразвука. Наиболее сильное отражение наблюдается на границах кость - окружающие её ткани и ткани - воздух. У воздуха малая плотность и наблюдается практически полное отражение ультразвука. Отражение ультразвуковых волн наблюдается на границе мышца - надкостница - кость, на поверхности полых органов.

Бегущие и стоячие ультразвуковые волны

Если при распространении ультразвуковых волн в среде не происходит их отражения, образуются бегущие волны. В результате потерь энергии колебательные движения частиц среды постепенно затухают, и чем дальше расположены частицы от излучающей поверхности, тем меньше амплитуда их колебаний. Если же на пути распространения ультразвуковых волн имеются ткани с разными удельными акустическими сопротивлениями, то в той или иной степени происходит отражение ультразвуковых волн от пограничного раздела. Наложение падающих и отражающихся ультразвуковых волн может приводить к возникновению стоячих волн. Для возникновения стоячих волн расстояние от поверхности излучателя до отражающей поверхности должно быть кратным половине длины волны.

Инфразвук

Инфразвук, образующийся в море, называют одной из возможных причин нахождения судов, покинутых экипажем .

Опыты и демонстрации

Для демонстрации стоячих волн звука служит труба Рубенса .

Различие в скоростях распространения звука наглядно, когда вдыхают вместо воздуха гелий, и говорят что-либо, выдыхая им, - голос становится выше. Если же газ - гексафторид серы SF 6 , то голос звучит ниже . Связано это с тем, что газы примерно одинаково хорошо сжимаемы, поэтому в обладающем очень низкой плотностью гелии по сравнению с воздухом происходит увеличение скорости звука, и понижение - в гексафториде серы с очень высокой для газов плотностью, размеры же ротового резонатора человека остаются неизменными, в итоге меняется резонансная частота, так как чем выше скорость звука, тем выше резонансная частота при остальных неизменных условиях.

Ультразвук представляет волны продольного вида, которые имеют частоту колебаний более 20 КГц. Это больше частоты колебаний, воспринимаемых человеческим слуховым аппаратом. Человек же может воспринимать частоты, находящиеся в пределах 16-20 КГц, они называются звуковыми. Ультразвуковые волны выглядят как череда сгущений и разряжений вещества или среды. Благодаря их свойствам они находят широкое применение во многих областях.

Что это

В ультразвуковой диапазон попадают частоты, начиная от 20 тысяч и до нескольких миллиардов герц. Это колебания высокой частоты, которые находятся за областью слышимости ухом человека. Однако ультразвуковые волны вполне воспринимают некоторые виды животных. Это дельфины, киты, крысы и другие млекопитающие.

По физическим свойствам ультразвуковые волны являются упругими, поэтому они не имеют отличий от звуковых. В результате разница между звуковыми и ультразвуковыми колебаниями весьма условна, ведь она зависит от субъективного восприятия слуха человека и равняется верхнему уровню слышимого звука.

Но наличие более высоких частот, а значит и небольшой длины волны, придает ультразвуковым колебаниям определенные особенности:
  • Ультразвуковые частоты имеют разную скорость перемещения через различные вещества, благодаря чему можно с высокой точностью определять свойство протекающих процессов, удельную тепловую емкость газов, а также характеристики твердого тела.
  • Волны значительной интенсивности обладают определенными эффектами, которые подчиняются нелинейной акустике.
  • При движении ультразвуковых волн со значительной мощностью в жидкостной среде возникает явление акустической кавитации. Данное явление очень важно, ведь в результате создается поле пузырьков, которые образуются из субмикроскопических частиц газа или пара в водной или иной среде. Они пульсируют с некоторой частотой и захлопываются с огромным локальным давлением. Это создает сферические ударные волны, что ведет к появлению акустических микроскопических потоков. Благодаря использованию этого явления ученые научились очищать загрязненные детали, а также создавать торпеды, которые движутся в воде быстрее скорости звука.
  • Ультразвук может быть сфокусирован и сконцентрирован, что позволяет создавать звуковые рисунки. Это свойство с успехом применяется в голографии и звуковом видении.
  • Ультразвуковая волна вполне может выступать в качестве дифракционной решетки.
Свойства
Ультразвуковые волны по своим свойствам схожи со звуковыми волнами, однако у них есть и специфические особенности:
  • Малая длина волны. Даже для низкой границы длина равняется менее нескольких сантиметров. Такой небольшой размер длины приводит к лучевому характеру перемещения ультразвуковых колебаний. Непосредственно рядом с излучателем волна идет в виде пучка, которая приближается к параметрам излучателя. Однако, оказываясь в условиях неоднородной среды, пучок перемещается как луч света. Он также может отражаться, рассеиваться, преломляться.
  • Малый период колебаний, благодаря чему появляется возможность использования ультразвуковых колебаний в виде импульсов.
  • Ультразвук нельзя услышать и он не создает раздражающего эффекта.
  • При воздействии ультразвуковых колебаний на определенные среды можно добиться получения специфических эффектов. К примеру, можно создать локальный нагрев, дегазацию, обеззаразить среду, кавитацию и многие иные эффекты.
Принцип действия
Для создания ультразвуковых колебаний используются различные устройства:
  • Механические, где в качества источника выступает энергия жидкости или газа.
  • Электромеханические, где ультразвуковая энергия создается из электрической.

В качестве механических излучателей могут выступать свистки и сирены, работающие с помощью воздуха или жидкости. Они удобны и просты, однако у них есть свои минусы. Так коэффициент полезного действия у них находится в пределах 10-20 процентов. Они создают обширный спектр частот с нестабильной амплитудой и частотой. Это ведет к тому, что такие устройства невозможно использовать в условиях, когда требуется точность. Чаще всего их применяют в качестве средств сигнализации.

Электромеханические устройства используют принцип пьезоэлектрического эффекта. Его особенность в том, что при образовании электрозарядов на гранях кристалла происходит его сжимание и растягивание. В результате создаются колебания с частотой, зависящей от периода смены потенциала на поверхностях кристалла.

Кроме преобразователей, которые базируются на пьезоэлектрическом эффекте, могут применяться и магнитострикционные преобразователи. Они используются для создания мощного ультразвукового пучка. Сердечник, который выполнен из магнитострикционного материала, размещенный в проводящей обмотке, изменяет собственную длину согласно форме электрического сигнала, поступающего на обмотку.

Применение

Ультразвук находит широкое применение в самых разнообразных областях.

Чаще всего его используют в следующих направлениях:
  • Получение данных о конкретном веществе.
  • Обработка и передача сигналов.
  • Воздействие на вещество.
Так при помощи ультразвуковых волн изучают:
  • Молекулярные процессы в различных структурах.
  • Определение концентрации веществ в растворах.
  • Определение, состава, прочностных характеристик материалов и так далее.
В ультразвуковой обработке часто используется метод кавитации:
  • Металлизация.
  • Ультразвуковая очистка.
  • Дегазация жидкостей.
  • Диспергирование.
  • Получение аэрозолей.
  • Ультразвуковая стерилизация.
  • Уничтожения микроорганизмов.
  • Интенсификация электрохимических процессов.
Воздействием ультразвуковых волн в промышленности производят следующие технологические операции:
  • Коагуляция.
  • Горение в ультразвуковой среде.
  • Сушка.
  • Сварка.

В медицине ультразвуковые волны используются в терапии и диагностике. В диагностике задействуют локационные методы с применением импульсного излучения. К ним относятся ультразвуковая кардиография, эхоэнцефалография и ряд иных методов. В терапии ультразвуковые волны применяются в качестве методов, основанных на тепловом и механическом воздействии на ткани. К примеру, довольно часто во время операций используют ультразвуковой скальпель.

Также ультразвуковыми колебаниями проводится:

  • Микромассаж структур ткани при помощи вибрации.
  • Стимуляция регенерации клеток, а также межклеточного обмена.
  • Увеличение проницаемости оболочек тканей.

Ультразвукможет действовать на ткани угнетением, стимулированием или разрушением. Все это зависит от применяемой дозы ультразвуковых колебаний и их мощности. Однако не на все области тела человека разрешается использовать такие волны. Так с определенной осторожностью воздействуют на сердечную мышцу и ряд эндокринных органов. На мозг, шейные позвонки, мошонку и ряд иных органов воздействие вовсе не используется.

Ультразвуковые колебания применяются в случаях, когда невозможно использовать рентген в:
  • Травматологии используется метод эхографии, который с легкостью обнаруживает внутреннее кровотечение.
  • Акушерстве волны применяются для оценки развития плода, а также его параметров.
  • Кардиологии они позволяют обследовать сердечнососудистую систему.
Ультразвук в будущем

На текущий момент ультразвукшироко применяется в различных областях, но в будущем он найдет еще большее применение. Уже сегодня планируется создание фантастических для сегодняшнего дня устройств.

  • В медицинских целях разрабатывается технология ультразвуковой акустической голограммы. Данная технология предполагает расположение микрочастиц в пространстве для создания необходимого изображения.
  • Ученые работают над созданием технологии бесконтактных устройств, которые должны будут заменить сенсорные приборы. К примеру, уже сегодня созданы игровые устройства, которые распознают перемещения человека без непосредственного контакта. Прорабатываются технологии, которые предполагают создание невидимых кнопок, которые вполне можно ощутить руками и управлять ими. Развитие подобных технологий позволит создать бесконтактные смартфоны или планшеты. К тому же данная технология расширит возможности виртуальной реальности.
  • При помощи ультразвуковых волн уже сегодня можно заставить левитировать небольшие объекты. В будущем могут появиться машины, которые будут за счет волн парить над землей и в отсутствии трения перемещаться с огромной скоростью.
  • Ученые предполагают, что в будущем ультразвук позволит научить слепых людей видеть. Такая уверенность базируется на том, что летучие мыши распознают объекты с помощью отраженных ультразвуковых волн. Уже создан шлем, который преобразует отражаемые волны в слышимый звук.
  • Уже сегодня люди предполагают добывать полезные ископаемые в космосе, ведь там есть все. Так астрономы нашли алмазную планету, на которой полно драгоценных камней. Но как добывать такие твердые материалы в космосе. Именно ультразвук должен будет помочь в бурении плотных материалов. Такие процессы вполне возможны даже в отсутствии атмосферы. Такие технологии бурения позволят собирать образцы, проводить исследования и добывать полезные ископаемые там, где это сегодня считается невозможным.

Ультразвуком называют упругие волны (волны, распространяющиеся в жидких, твёрдых и газообразных средах за счёт действия упругих сил), частота которых лежит за пределами слышимого для человека диапазона - приблизительно от 20 кГц и выше.

Полезные особенности ультразвуковых волн

И хотя физически ультразвук имеет ту же природу, что и слышимый звук, отличаясь лишь условно (более высокой частотой), именно благодаря более высокой частоте ультразвук оказывается применим по ряду полезных направлений. Так, при измерении скорости ультразвука в твердом, жидком или газообразном веществе, получают очень незначительные погрешности при мониторинге быстропротекающих процессов, при определении удельной теплоемкости (газа), при измерении упругих постоянных твердых тел.

Высокая частота при малых амплитудах дает возможность достигать повышенных плотностей потоков энергии, ибо энергия упругой волны пропорциональна квадрату ее частоты. Кроме того ультразвуковые волны, используемые правильным образом позволяют получить ряд совершенно особенных акустических эффектов и явлений.

Одно из таких необычных явлений - акустическая кавитация, возникающая при направлении мощной ультразвуковой волны в жидкость. В жидкости, в поле действия ультразвука, крохотные пузырьки пара или газа (субмикроскопического размера) начинают расти до долей миллиметров в диаметре, при этом пульсируя с частотой волны и схлопываясь в положительной фазе давления.

Захлопывающийся пузырек порождает локально высокий импульс давления, измеряемый тысячами атмосфер, становясь источником ударных сферических волн. Акустические микропотоки, образующиеся возле таких пульсирующих пузырьков, возымели полезное применение для получения эмульсий, очистки деталей и т. д.

Фокусируя ультразвук, получают звуковые изображения в акустической голографии и в системах звуковидения, концентрируют звуковую энергию с целью формирования направленных излучений с заданными и управляемыми характеристиками направленности.

Используя ультразвуковую волну в качестве дифракционной решетки для света, можно для тех или иных целей изменять показатели преломления света, поскольку плотность в ультразвуковой волне, как и в упругой волне в принципе, периодически изменяется.

Наконец, особенности, связанные со скоростью распространения ультразвука. В неорганических средах ультразвук распространяется со скоростью, зависящей от упругости и плотности сред.

Что касается сред органических, то здесь на скорость влияют границы и их характер, то есть фазовая скорость зависит от частоты (дисперсия). Ультразвук затухает с удалением фронта волны от источника - фронт расходится, ультразвук рассеивается, поглощается.

Внутреннее трение среды (сдвиговая вязкость) приводит к классическому поглощению ультразвука, кроме того релаксационное поглощение для ультразвука превосходит классическое. В газе ультразвук затухает сильнее, в твердых и в жидких телах - гораздо слабее. В воде, например, затухает в 1000 раз медленнее чем в воздухе. Так, промышленные области применения ультразвука почти целиком связаны с твердыми и жидкими телами.

Ультразвук в эхолокации и гидролокации (пищевая, оборонная, добывающая промышленности)

Первый прообраз гидролокатора был создан для предотвращения столкновений судов со льдинами и айсбергами, русским инженером Шиловским вместе с французским физиком Ланжевеном в далеком 1912 году.

Прибор использовал принцип отражения и приема звуковой волны. Сигнал направлялся в определенную точку, а по задержке ответного сигнала (эхо), зная скорость звука, можно было судить о расстоянии до отразившего звук препятствия.

Шиловский и Ланжевен стали глубоко исследовать гидроакустику, и вскоре создали прибор, способный обнаруживать вражеские подводные лодки в Средиземном море на расстоянии до 2 километров. Все современные гидролокаторы, в том числе военные, - потомки того самого прибора.

Современные эхолоты для исследования рельефа дна состоят из четырех блоков: передатчика, приемника, преобразователя и экрана. Функция передатчика - отправлять вглубь воды ультразвуковые импульсы (50 кГц, 192 кГц или 200 кГц), которые распространяются в воде со скоростью 1,5 км/с, где отражаются от рыб, камней, других предметов и дна, затем эхо достигает приемника, обрабатывается преобразователем и результат отображается на дисплее в удобной для зрительного восприятия форме.

Ультразвук в электронной и электроэнергетической промышленности

Без ультразвука не обходятся многие области современной физики. Физика твердого тела и полупроводников, а также акустоэлектроника, во многом тесно сопряжены с ультразвуковыми методами исследований, - с воздействиями на частоте от 20 кГц и выше. Особенное место занимает здесь акустоэлектроника, где ультразвуковые волны взаимодействуют с электрическими полями и электронами внутри твердых тел.

Объемные ультразвуковые волны используются на линиях задержки и в кварцевых резонаторах с целью стабилизации частоты в современных радиоэлектронных системах обработки и передачи информации. Поверхностные акустические волны занимают особое место в полосовых фильтрах для телевидения, в синтезаторах частот, в устройствах переноса заряда акустической волной, в устройствах памяти и считывания изображений. Наконец, корреляторы и конвольверы - используют в своей работе поперечный акустоэлектрический эффект.

Радиоэлектроника и ультразвук

Для задержки одного электрического сигнала относительно другого полезны ультразвуковые линии задержки. Электрический импульс преобразуется в импульсное механическое колебание ультразвуковой частоты, которое распространяется многократно медленнее электромагнитного импульса; затем механическое колебание обратно преобразуется в электрический импульс, и получается сигнал, задержанный относительно подаваемого изначально.

Для такого преобразования обычно применяют пьезоэлектрические или магнитострикционные преобразователи, поэтому и линии задержки называются пьезоэлектрическими или магнитострикционными.


В пьезоэлектрической линии задержки электрический сигнал подается на кварцевую пластинку (пьезоэлектрический преобразователь), соединенную жестко с металлическим стрежнем.

К другому концу стержня присоединен второй пьезоэлектрический преобразователь. Входной преобразователь принимает сигнал, создает механические колебания, распространяющиеся по стрежню, и когда колебания достигают через стержень второго преобразователя, вновь получается электрический сигнал.

Скорость распространения колебаний по стержню сильно меньше чем просто у электрического сигнала, поэтому сигнал, прошедший через стержень задерживается относительно подаваемого на величину, связанную с разностью скоростей электромагнитных и ультразвуковых колебаний.

Магнитострикционная линия задержки сдержит входной преобразователь, магниты, звукопровод, выходной преобразователь и поглотители. Входной сигнал подается на первую катушку, в стержневом звукопроводе из магнитострикционного материала начинаются колебания ультразвуковой частоты - механические колебания - магнит создает здесь постоянное подмагничивание в зоне преобразования и начальную магнитную индукцию.

Ультразвук в обрабатывающей промышленности (резка и сварка)

Между источником ультразвука и деталью располагают абразивный материал (кварцевый песок, алмаз, камень и т. д.). Ультразвук действует на частицы абразива, которые в свою очередь с частотой ультразвука ударяют о деталь. Материал детали под воздействием огромного количества крохотных ударов абразивных зерен разрушается, - так происходит обработка.

Резание складывается с движением подачи, при этом продольные колебания резания являются основными. Точность ультразвуковой обработки зависит от зернистости абразива, и достигает 1 мкм. Таким путем делают сложные вырезы, необходимые в изготовлении металлических деталей, шлифовке, гравировке и сверлении.


Если необходимо сварить разнородные металлы (или даже полимеры) или толстую деталь объединить с тонкой пластиной - на помощь опять же приходит ультразвук. Это так называемая . Под действием ультразвука в области сварки металл становится очень пластичным, детали можно очень легко вращать во время соединения под любыми углами. И стоит отключить ультразвук - детали мгновенно соединятся, схватятся.

Особенно примечательно, что сварка происходит при температуре ниже температуры плавления деталей, и соединение их происходит фактически в твердом состоянии. Но так сваривают и стали, и титан, и даже молибден. Тонкие листы свариваются проще всего. Данный метод сварки не предполагает особой подготовки поверхности деталей, это касается и металлов и полимеров.

Ультразвук в металлургии (ультразвуковая дефектоскопия)

Ультразвуковая дефектоскопия является одним из эффективнейших методов контроля качества металлических деталей без разрушения. В однородных средах ультразвук распространяется без быстрых затуханий направленно, и на границе сред ему свойственно отражение. Так металлические детали проверяют на наличие внутри них раковин и трещин (граница сред воздух-металл), выявляют повышенную усталость металла.

Ультразвук способен проникнуть в деталь на глубину до 10 метров, причем размеры выявляемых дефектов имеют порядок 5 мм. Существуют: теневой, импульсный, резонансный, структурного анализа, визуализации, - пять методов ультразвуковой дефектоскопии.


Простейший метод - теневая ультразвуковая дефектоскопия, данный метод строится на ослаблении ультразвуковой волны, когда она наталкивается на дефект при прохождении сквозь деталь, поскольку дефект создает ультразвуковую тень. Работают два преобразователя: первый излучает волну, второй - принимает.

Данный метод малочувствителен, дефект обнаруживается лишь в случае, если его влияние изменяет сигнал минимум на 15%, к тому же нельзя определить глубину, где в детали находится дефект. Более точные результаты дает импульсный ультразвуковой метод, он показывает еще и глубину.

Если какое-либо тело колеблется в упругой среде быстрее, чем среда успевает обтекать его, оно своим движением то сжимает, то разрежает среду. Слои повышенного и пониженного давления разбегаются от колеблющегося тела во все стороны и образуют звуковые волны. Если колебания тела, создающего волну следуют друг за другом не реже, чем 16 раз в секунду не чаще, чем 18 тысяч раз в секунду, то человеческое ухо слышит их.

Частоты 16 - 18000 Гц, которые способен воспринимать слуховой аппарат человека принято называть звуковыми, например писк комара »10 кГц. Но воздух, глубины морей и земные недра наполнены звуками, лежащими ниже и выше этого диапазона - инфра и ультразвуками. В природе ультразвук встречается в качестве компонента многих естественных шумов: в шуме ветра, водопада, дождя, морской гальки, перекатываемой прибоем, в грозовых разрядах. Многие млекопитающие, например кошки и собаки, обладают способностью восприятия ультразвука частотой до 100 кГц, а локационные способности летучих мышей, ночных насекомых и морских животных всем хорошо известны. Существование неслышимых звуков было обнаружено с развитием акустики в конце XIX века. Тогда же начались первые исследования ультразвука, но основы его применения были заложены только в первой трети XX-века.

Нижней границей ультразвукового диапазона называют упругие колебания частотой от 18 кГц. Верхняя граница ультразвука определяется природой упругих волн, которые могут распространяться только при том условии, что длина волны значительно больше длины свободного пробега молекул (в газах) или межатомных расстояний (в жидкостях и газах). В газах верхний предел составляет »106 кГц, в жидкостях и твёрдых телах »1010 кГц. Как правило, ультразвуком называют частоты до 106 кГц. Более высокие частоты принято называть гиперзвуком.

Ультразвуковые волны по своей природе не отличаются от волн слышимого диапазона и подчиняются тем же физическим законам. Но, у ультразвука есть специфические особенности, которые определили его широкое применение в науке и технике. Вот основные из них:

  • Малая длина волны. Для самого низкого ультразвукового диапазона длина волны не превышает в большинстве сред нескольких сантиметров. Малая длина волны обуславливает лучевой характер распространения УЗ волн. Вблизи излучателя ультразвук распространяется в виде пучков по размеру близких к размеру излучателя. Попадая на неоднородности в среде, ультразвуковой пучок ведёт себя как световой луч, испытывая отражение, преломление, рассеяние, что позволяет формировать звуковые изображения в оптически непрозрачных средах, используя чисто оптические эффекты (фокусировку, дифракцию и др.)
  • Малый период колебаний, что позволяет излучать ультразвук в виде импульсов и осуществлять в среде точную временную селекцию распространяющихся сигналов.
  • Возможность получения высоких значений энергии колебаний при малой амплитуде, т.к. энергия колебаний пропорциональна квадрату частоты. Это позволяет создавать УЗ пучки и поля с высоким уровнем энергии, не требуя при этом крупногабаритной аппаратуры.
  • В ультразвуковом поле развиваются значительные акустические течения. Поэтому воздействие ультразвука на среду порождает специфические эффекты: физические, химические, биологические и медицинские. Такие как кавитация, звукокапиллярный эффект, диспергирование, эмульгирование, дегазация, обеззараживание, локальный нагрев и многие другие.
  • Ультразвук неслышим и не создаёт дискомфорта обслуживающему персоналу.

История ультразвука. Кто открыл ультразвук.

Внимание к акустике было вызвано потребностями морского флота ведущих держав - Англии и Франции, т.к. акустический - единственный вид сигнала, способный далеко распространяться в воде. В 1826 году французский учёный Колладон определил скорость звука в воде. Эксперимент Колладона считается рождением современной гидроакустики. Удар в подводный колокол в Женевском озере происходил с одновременным поджогом пороха. Вспышка от пороха наблюдалась Колладоном на расстоянии 10 миль. Он также слышал звук колокола при помощи подводной слуховой трубы. Измеряя временной интервал между этими двумя событиями, Колладон вычислил скорость звука - 1435 м/сек. Разница с современными вычислениями только 3 м/сек.

В 1838 году, в США, звук впервые применили для определения профиля морского дна с целью прокладки телеграфного кабеля. Источником звука, как и в опыте Колладона, был колокол, звучащий под водой, а приёмником большие слуховые трубы, опускавшиеся за борт корабля. Результаты опыта оказались неутешительными. Звук колокола (как, впрочем, и подрыв в воде пороховых патронов), давал слишком слабое эхо, почти не слышное среди других звуков моря. Надо было уходить в область более высоких частот, позволяющих создавать направленные звуковые пучки.

Первый генератор ультразвука сделал в 1883 году англичанин Фрэнсис Гальтон . Ультразвук создавался подобно свисту на острие ножа, если на него дуть. Роль такого острия в свистке Гальтона играл цилиндр с острыми краями. Воздух или другой газ, выходящий под давлением через кольцевое сопло, диаметром таким же, как и кромка цилиндра, набегал на кромку, и возникали высокочастотные колебания. Продувая свисток водородом, удалось получить колебания до 170 кГц.

В 1880 году Пьер и Жак Кюри сделали решающее для ультразвуковой техники открытие. Братья Кюри заметили, что при оказании давления на кристаллы кварца генерируется электрический заряд, прямо пропорциональный прикладываемой к кристаллу силе. Это явление было названо "пьезоэлектричество" от греческого слова, означающего "нажать". Кроме того, они продемонстрировали обратный пьезоэлектрический эффект, который проявлялся тогда, когда быстро изменяющийся электрический потенциал применялся к кристаллу, вызывая его вибрацию. Отныне появилась техническая возможность изготовления малогабаритных излучателей и приёмников ультразвука.

Гибель «Титаника» от столкновения с айсбергом, необходимость борьбы с новым оружием - подводными лодками требовали быстрого развития ультразвуковой гидроакустики. В 1914 году, французский физик Поль Ланжевен совместно с талантливым русским учёным-эмигрантом - Константином Васильевичем Шиловским впервые разработали гидролокатор, состоящий из излучателя ультразвука и гидрофона - приёмника УЗ колебаний, основанный на пьезоэффекте. Гидролокатор Ланжевена - Шиловского, был первым ультразвуковым устройством , применявшимся на практике. Тогда же российский ученый С.Я.Соколов разработал основы ультразвуковой дефектоскопии в промышленности. В 1937 году немецкий врач-психиатр Карл Дуссик, вместе с братом Фридрихом, физиком, впервые применили ультразвук для обнаружения опухолей головного мозга, но результаты, полученные ими, оказались недостоверными. В медицинской практике ультразвук впервые стал применяться только с 50-х годов XX-го века в США.

Получение ультразвука.

Излучатели ультразвука можно разделить на две большие группы:

1) Колебания возбуждаются препятствиями на пути струи газа или жидкости, или прерыванием струи газа или жидкости. Используются ограниченно, в основном для получения мощного УЗ в газовой среде.

2) Колебания возбуждаются преобразованием в механические колебаний тока или напряжения. В большинстве ультразвуковых устройств используются излучатели этой группы: пьезоэлектрические и магнитострикционные преобразователи.

Кроме преобразователей, основанных на пьезоэффекте, для получения мощного ультразвукового пучка используются магнитострикционные преобразователи. Магнитострикция - это изменение размеров тел при изменении их магнитного состояния. Сердечник из магнитострикционного материала, помещённый в проводящую обмотку меняет свою длину в соответствии с формой токового сигнала, проходящего по обмотке. Данное явление, открытое в 1842 г. Джеймсом Джоулем, свойственно ферромагнетикам и ферритам. Наиболее употребительные магнитострикционные материалы это сплавы на основе никеля, кобальта, железа и алюминия. Наибольшей интенсивности ультразвукового излучения позволяет достичь сплав пермендюр (49%Co, 2%V, остальное Fe), который используется в мощных УЗ излучателях. В частности в , выпускаемых нашим предприятием.

Применение ультразвука.

Многообразные применения ультразвука можно условно разделить на три направления:

  • получение информации о веществе
  • воздействие на вещество
  • обработка и передача сигналов

Зависимость скорости распространения и затухания акустических волн от свойств вещества и процессов в них происходящих, используется в таких исследованиях:

  • изучение молекулярных процессов в газах, жидкостях и полимерах
  • изучение строения кристаллов и других твёрдых тел
  • контроль протекания химических реакций, фазовых переходов, полимеризации и др.
  • определение концентрации растворов
  • определение прочностных характеристик и состава материалов
  • определение наличия примесей
  • определение скорости течения жидкости и газа
Информацию о молекулярной структуре вещества даёт измерение скорости и коэффициента поглощения звука в нём. Это позволяет измерять концентрацию растворов и взвесей в пульпах и жидкостях, контролировать ход экстрагирования, полимеризации, старения, кинетику химических реакций. Точность определения состава веществ и наличия примесей ультразвуком очень высока и составляет доли процента.

Измерение скорости звука в твёрдых телах позволяет определять упругие и прочностные характеристики конструкционных материалов. Такой косвенный метод определения прочности удобен простотой и возможностью использования в реальных условиях.

Ультразвуковые газоанализаторы осуществляют слежение за процессами накопления опасных примесей. Зависимость скорости УЗ от температуры используется для бесконтактной термометрии газов и жидкостей.

На измерении скорости звука в движущихся жидкостях и газах, в том числе неоднородных (эмульсии, суспензии, пульпы), основаны ультразвуковые расходомеры, работающие на эффекте Допплера. Аналогичная аппаратура используется для определения скорости и расхода потока крови в клинических исследованиях.

Большая группа методов измерения основана на отражении и рассеянии волн ультразвука на границах между средами. Эти методы позволяют точно определять местонахождение инородных для среды тел и используются в таких сферах как:

  • гидролокация
  • неразрушающий контроль и дефектоскопия
  • медицинская диагностика
  • определения уровней жидкостей и сыпучих тел в закрытых ёмкостях
  • определения размеров изделий
  • визуализация звуковых полей — звуковидение и акустическая голография

Отражение, преломление и возможность фокусировки ультразвука используется в ультразвуковой дефектоскопии, в ультразвуковых акустических микроскопах, в медицинской диагностике, для изучения макронеоднородностей вещества. Наличие неоднородностей и их координаты определяются по отражённым сигналам или по структуре тени.

Методы измерения, основанные на зависимости параметров резонансной колебательной системы от свойств нагружающей его среды (импеданс), применяются для непрерывного измерения вязкости и плотности жидкостей, для измерения толщины деталей, доступ к которым возможен только с одной стороны. Этот же принцип лежит в основе УЗ твердомеров, уровнемеров, сигнализаторов уровня. Преимущества УЗ методов контроля: малое время измерений, возможность контроля взрывоопасных, агрессивных и токсичных сред, отсутствие воздействия инструмента на контролируемую среду и процессы.

Воздействие ультразвука на вещество.

Воздействие ультразвука на вещество, приводящее к необратимым изменениям в нём, широко используется в промышленности. При этом механизмы воздействия ультразвука различны для разных сред. В газах основным действующим фактором являются акустические течения, ускоряющие процессы тепломассообмена. Причём эффективность УЗ перемешивания значительно выше обычного гидродинамического, т.к. пограничный слой имеет меньшую толщину и как следствие, больший градиент температуры или концентрации. Этот эффект используется в таких процессах, как:

  • ультразвуковая сушка
  • горение в ультразвуковом поле
  • коагуляция аэрозолей

В ультразвуковой обработке жидкостей основным действующим фактором является кавитация . На эффекте кавитации основаны следующие технологические процессы:

  • ультразвуковая очистка
  • металлизация и пайка
  • звукокапиллярный эффект — проникновение жидкостей в мельчайшие поры и трещины. Применяется для пропитки пористых материалов и имеет место при любой ультразвуковой обработке твёрдых тел в жидкостях.
  • кристаллизация
  • интенсификация электрохимических процессов
  • получение аэрозолей
  • уничтожения микроорганизмов и ультразвуковая стерилизация инструментов

Акустические течения — один из основных механизмов воздействия ультразвука на вещество. Он обусловлен поглощением ультразвуковой энергии в веществе и в пограничном слое. Акустические потоки отличаются от гидродинамических малой толщиной пограничного слоя и возможностью его утонения с увеличением частоты колебаний. Это приводит к уменьшению толщины температурного или концентрационного погранслоя и увеличению градиентов температуры или концентрации, определяющих скорость переноса тепла или массы. Это способствует ускорению процессов горения, сушки, перемешивания, перегонки, диффузии, экстракции, пропитки, сорбции, кристаллизации, растворения, дегазации жидкостей и расплавов. В потоке с высокой энергией влияние акустической волны осуществляется за счёт энергии самого потока, путём изменения его турбулентности. В этом случае акустическая энергия может составлять всего доли процентов от энергии потока.

При прохождении через жидкость звуковой волны большой интенсивности, возникает так называемая акустическая кавитация . В интенсивной звуковой волне во время полупериодов разрежения возникают кавитационные пузырьки, которые резко схлопываются при переходе в область повышенного давления. В кавитационной области возникают мощные гидродинамические возмущения в виде микроударных волн и микропотоков. Кроме того, схлопывание пузырьков сопровождается сильным локальным разогревом вещества и выделением газа. Такое воздействие приводит к разрушению даже таких прочных веществ, как сталь и кварц. Этот эффект используется для диспергировании твёрдых тел, получения мелкодисперсных эмульсий несмешивающихся жидкостей, возбуждения и ускорения химических реакций, уничтожения микроорганизмов, экстрагирования из животных и растительных клеток ферментов. Кавитация определяет также такие эффекты как слабое свечение жидкости под действием ультразвука - звуколюминесценция , и аномально глубокое проникновение жидкости в капилляры - звукокапиллярный эффект .

Кавитационное диспергирование кристаллов карбоната кальция (накипи) лежит в основе акустических противонакипных устройств . Под воздействием ультразвука происходит раскалывание частиц, находящихся в воде, их средние размеры уменьшаются с 10 до 1 микрона, увеличивается их количество и общая площадь поверхности частиц. Это приводит к переносу процесса образования накипи с теплообменной поверхности в непосредственно в жидкость. Ультразвук так же воздействует и на сформированный слой накипи, образуя в нем микротрещины способствующие откалыванию кусочков накипи с теплообменной поверхности.

В установках по ультразвуковой очистке с помощью кавитации и порождаемых ею микропотоков удаляют загрязнения как жёстко связанные с поверхностью, типа окалины, накипи, заусенцев, так и мягкие загрязнения типа жирных плёнок, грязи и т.п. Этот же эффект используется для интенсификации электролитических процессов.

Под действием ультразвука возникает такой любопытный эффект, как акустическая коагуляция, т.е. сближение и укрупнение взвешенных частиц в жидкости и газе. Физический механизм этого явления ещё не окончательно ясен. Акустическая коагуляция применяется для осаждения промышленных пылей, дымов и туманов при низких для ультразвука частотах до 20 кГц. Возможно, что благотворное действие звона церковных колоколов основано на этом эффекте.

Механическая обработка твёрдых тел с применением ультразвука основана на следующих эффектах:

  • уменьшение трения между поверхностями при УЗ колебаниях одной из них
  • снижение предела текучести или пластическая деформация под действием УЗ
  • упрочнение и снижение остаточных напряжений в металлах под ударным воздействием инструмента с УЗ частотой
  • Комбинированное воздействие статического сжатия и ультразвуковых колебаний используется в ультразвуковой сварке

Различают четыре вида мехобработки с помощью ультразвука:

  • размерная обработка деталей из твёрдых и хрупких материалов
  • резание труднообрабатываемых материалов с наложением УЗ на режущий инструмент
  • снятие заусенцев в ультразвуковой ванне
  • шлифование вязких материалов с ультразвуковой очисткой шлифовального круга

Действия ультразвука на биологические объекты вызывает разнообразные эффекты и реакции в тканях организма, что широко используется в ультразвуковой терапии и хирургии. Ультразвук является катализатором, ускоряющим установление равновесного, с точки зрения физиологии состояния организма, т.е. здорового состояния. УЗ оказывает на больные ткани значительно большее влияние, чем на здоровые. Также используется ультразвуковое распыление лекарственных средств при ингаляциях. Ультразвуковая хирургия основана на следующих эффектах: разрушение тканей собственно сфокусированным ультразвуком и наложение ультразвуковых колебаний на режущий хирургический инструмент.

Ультразвуковые устройства применяются для преобразования и аналоговой обработки электронных сигналов и для управления световыми сигналами в оптике и оптоэлектронике. Малая скорость ультразвука используется в линиях задержки. Управление оптическими сигналами основывается на дифракции света на ультразвуке. Один из видов такой дифракции - т.н.брегговская дифракция зависит от длины волны ультразвука, что позволяет выделить из широкого спектра светового излучения узкий частотный интервал, т.е. осуществлять фильтрацию света.

Ультразвук чрезвычайно интересная вещь и можно предположить, что многие возможности его практического применения до сих пор не известны человечеству. Мы любим и знаем ультразвук и будем рады обсудить любые идеи, связанные его применением.

Где применяется ультразвук - сводная таблица

Наше предприятие, ООО «Кольцо-энерго», занимается производством и монтажом акустических противонакипных устройств «Акустик-Т». Устройства, выпускаемые нашим предприятием, отличаются исключительно высоким уровнем ультразвукового сигнала, что позволяет им работать на котлах без водоподготовки и пароводяных бойлерах с артезианской водой. Но предотвращение накипи - очень малая часть того, что может ультразвук. У этого удивительного природного инструмента огромные возможности и мы хотим рассказать вам о них. Сотрудники нашей компании много лет работали в ведущих российских предприятиях, занимающихся акустикой. Мы знаем об ультразвуке очень много. И если вдруг возникнет необходимость применить ультразвук в вашей технологии,